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Abstract 

'The use of a genetic algorithm is studied in designing 
control systems for a boiler-turbine power plant, with 
specifics in developping a proportional-integral (PI) 
controller and a state feedback controller for a non-linear 
multi-inputlmulti-output (MIMO) plant model. The plant 
model is presented along with a discussion of the inherent 
difficulties in such controller development. A sketch of 
the genetic algorithm (GA) is presented and its strategy as 
a method of control system design is discussed. 

1. Introduction 

The robust control of power plants has recieved a great 
deal of attention lately [l]. Automation is deemed a 
necessary condition for safe operation which minimizes 
material fatigue, the number of staff, and enables efficient 
plant management [2]. The challenge in controller design 
for these plants exists because they are typically non-linear 
and multi-variable with multiple control objectives. While 
conventional controls such as PID compensators yield an 
acceptable response, they do not have the flexibility 
necessary to provide a good performance over a wide 
region of operation. Application of modern optimal 
control techniques yields system performances that are 
optimal at only one operating point. 

Recent applications of robust control to power plant 
models have yielded quite favorable results [l]. These 
robust controllers perform very well over a wide range of 
operation. However, these robust control design 
methodologies require frequency response information in 
addition to a linearized model of the plant. A goal of 
modem intelligent control design is to obtain a controller 
based on inputloutput information only. The genetic 
algorithm (GA) is a method that holds promise for such a 
control system design. 

The GA is a search technique based on the mechanics of 
natural genetics and survival-of-the-fittest. Touted as an 

efficient and general method of searching a complex space 
[3], the GA has had success in many areas, such as the 
traveling salesman problem [4], optimal control of an 
aircraft autopilot system [ 5 ] ,  multivariate curve-fitting, and 
game-playing [4]. A number of these achievements 
suggest the potential utility of the GA as a method for 
control system design. 

2. The Power Plant Model 

The power plant model used is the one developed by Bell 
and Astr6m [63 for the boiler-turbine plant P16/G16 at the 
Sydvenska Kraft AB Plant in MalmS, Sweden. The boiler 
is oil-fired and the rated power is 160 MW. The model is a 
third-order, non-linear MIMO system with hard constraints 
and rate limits imposed on the actuators. It has fuel flow, 
control valve position, and feedwater flow as control 
inputs, and drum pressure, power output, and drum water 
level deviation as outputs. Although the model is of low 
order, it is capable of illustrating some of the complex 
dynamics associated with the real plant. The dynamics for 
the system are 

A 
&? = -0.0018~2p + 0 . 9 ~ 1  -0 .15~3 
dt 

where p=drum pressure (kg/cm2), '0 =power output 

( M Y ,  and 'f=fluid density (kg/m3). The normalized 
inputs to the system are W=fuel flow valve position, 
'2 =steam control valve position, and '3 =feedwater flow 
valve position. The following limitations are imposed on 
the valves: 
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du 
-2 I sec I 2 5 0.021 sec 

dt 

0.05 / sec 

D= i" 0 O 0 O I  
0 

(0.253 0.512 -0.014) 

and all valve position variables are constrained to lie in the 
interval [0,1]. The outputs to the system are P (drum 
pressure), '0 (output power), and XW (drum water level 
in meters). Pressure and power output are just the first two 
state variables, whereas water level is found through the 
auxiliary relationships 

0.13073pf + lOOa, +% -67.975) 
(3 a) 9 

(1 -0.001538pf)(0.8p- 25.6) 

(3b) 

(3c) 

a c s  = p J  (1.0394 -0.0012304~) 

qe = (0.854~2 - 0.147)p+ 45.59~1- 2.514% -2.096 

where qe is the evaporation rate (kgls) and 
steam quality. 

is the 

At a load level of 66.65 MW, pressure of 108 kglcm2, and 
fluid density of 428 kg/m3, the nominal inputs are found 

values, a linearized model is obtained from a truncated 
Taylor series expansion of the non-linear equations: 

to be U' =[0.34 0.69 0.436f. From these nominal 

& - = A + B i i  
dt 
y = C 2 +  DZ 

-2.509 0 
A =  6 . 9 4 ~  -0.1 0 [ - 6 . 6 9 ~ 1 0 - ~  0 11, 

[ 0 -1.389 l . , j ,  

0.9 -0.349 -0.15 
B =  0 14.155 

( 1  0 O ' I  
C =  0 1 0 

(6.34 x 0 4.71 x 10-3j , and 

3. The GA Control System Design 

The GA used in this paper is very similar to the algorithm 
that can be found in the standard literature on the topic [3], 
[7], [8],  [9], also known as the simple genetic algorithm. 
We used the three-operator GA with only minor deviations 
fkom the original. 

In this scheme, an initial population of binary strings is 
created randomly. Each of these strings represents one 
possible solution to the search problem. Next the solution 
strings are converted into their decimal equivalents and 
each candidate solution is tested in its environment. The 
fitness of each candidate is evaluated through some 
appropriate measure. The algorithm is driven towards 
maximizing this fitness measure. Application of the GA to 
an optimal control problem entails minimizing the 
quadratic cost function of the input and states. After the 
fitness of the entire population has been determined, it 
must be determined whether or not the termination 
criterion has been satisfied. This criterion can be any 
number of things. One possibility is to stop the algorithm 
at some finite number of generations and designate the 
result as the best fit from the population. Another 
possibility is to test if the average fitness of the population 
exceeds some fiaction of the best fit in the population. If 
the criterion is not satisfied then we continue with the three 
genetic operators: reproduction, crossover, and mutation. 

Fitness-proportionate reproduction is effected throught the 
simulated spin of a weighted roulette wheel. The roulette 
wheel is biased with the fitnesses of each of the solution 
candidates. The wheel is spun N times where N is the 
number of strings in the population. This operation yields 
a new population of strings that reflect the fitnesses of the 
previous generation's fit candidates. The next operation, 
crossover, is performed on two strings at a time that are 
selected fkom the population at random. Crossover 
involves choosing a random position in the two strings and 
swapping the bits that occur after this position. The final 
genetic operator in the algorithm is mutation. Mutation is 
performed sparingly, typically every 100-1000 bit 
transfers fiom crossover, and it involves selecting a string 
at random as well as a bit position at random and changing 
it from a 1 to a 0 or vice-versa. After mutation, the new 
generation is complete and the procedure begins again 
with fitness evaluation of the population. 
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In a control system design using the GA, the parameters 
that are represented as binary strings are the relevant 
control parameters. In the design of the proportional- 
integral (PI) control system, the parameters are the 12 
proportional, integral, and cross-coupling gains in the 
coupled controller illustrated in Fig. 1. In the linear 
quadratic regulator (LQR) controller the parameters are the 
9 state feedback gains in the standard LQR configuration. 
In each of the control designs the quadratic performance 
index is selected as 

-- 

NON-LINEAR 

PLANT 

J = jit (y - yref)T Q(y -yref) + uTRu)lt 

yl 

2 
Y 

1'1 Controller Design 
In the coupled PI controller design the gains are trained in 
5 stages. The first stage consists of training the 
proportional gains in the PI controller only and leaving 
the others fixed at zero. The initial gains are selected at 
random between some coarse upper and lower bounds and 
Inned through each genetic iteration. Once some pre- 
specified convergence criterion has been achieved, the best 
fit triplet of proportional gains is designated as the result 
for the stage. Stage 2 extends the strings in the population 
to include the next three integral gains. The bounds on the 
first three values in the string (the proportional gains) are 
between k 25% of the result from the previous stage. This 
constrains the first three gains to be around their previous 

best value, and yet allows fine-tuning with the introduction 
of the new integral gains which are set initially to random 
values. Again, the genetic algorithm is executed until some 
convergence criterion has been attained. This procedure is 
repeated in the same manner with the string lengthened by 
two cross-coupling gains which represent the coupling of 
the first input error to the other two. This is done two 
more times to train the final four coupling gains. 

Each stage of training entails an alternating reference 
demand change in pressure and power. After the system 
has been trained to perform well with one reference 
change, it is then trained to perform well with a different 
reference demand change. This is done until some 
convergence criterion has been attained. By training the 
controller gains in this manner the gains are tuned to some 
average performance between two high-performance 
results. The purpose of this method is to design a 
controller that performs well at different operating points. 

The goal of the controller is to track step demands in 
power and pressure. To achieve this the following 
performance index is selected to be minimized: 

J = J, +Iss 

where Jo  is defined by (5 ) .  In addition, we penalize the 
steady-state error through computation of 

, 
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The weighting matrices are selected as Q = I 3 x 3 ,  

724 0 0 
R = [  1:l 

The values of these matrices can be determined from the 
relative importance of the variables and from the 
relationships of the outputs to the inputs in the steady- 
state. Since the order of the system has been increased to 
six by including the integral action in the controller, we 
weigh the steady-state error heavily in the hopes of 
achieving perfect steady-state tracking. 

The GA parameters are selected for the training cycle as: 

Population size 64 
Crossover rate 0.9 
Mutation rate 0.001 
Parameter resolution 9 bits per substring 

Each training cycle is executed until either 30 generations 
have elapsed or 95% convergence has been achieved, and 
the fitness function used in a training cycle is 107/J. 

LQR Controller Design 
The goal of the genetic algorithm is to determine the 
matrix gains in the feedback path to ensure tracking of the 
reference signal over a wide operating range. The 
controller structure is simply a state feedback matrix in the 
feedback path and a feedfonvard gain matrix to ensure 
tracking. This feedfonvard matrix is found using the 
transfer hnction from the input to the output. To obtain 
reasonable tracking over a wide operating range, the GA 
trains the gains of the feedback matrix with a demand that 
covers the nominal as well as large load changes. 

The genetic algorithm is implemented with a number of 
different genetic parameters (i.e., crossover rate, mutation 
rate, population number, etc.). In an effort to improve 
convergence, the individual matrix elements' resolutions 
are all increased at a specified generation of the run. At 
this specified time, all of the substrings are lengthened by 
two bits. The old matrix element values are retained but at 
a greater precision. We select this lengthening of the bits 

to occur one-third of the way through the optimization run. 
We choose the following parameters: 

Population size 100 
Crossover rate 0.8 
Mutation rate 0.2 
Terminating generation 3 0 
Matrix element interval 
Initial resolution 
Resolution after 10 gen. 

[- 1, I] 
15 bits per substring 
17 bits per substring 

In addition to these parameters, the initial population is 
seeded with 3 members f?om a previous run's "best fit" 
population with the remainder of the population 
constructed at random. This is another attempt to obtain 
quicker convergence. 

In the GA optimization runs, the fitness function is 
selected as 100/(1+J) where J is identical to (5).  In 
addition, the weighting matrices are identical to those in 
the PI controller design. 

4. GA Design Results 

The performance of each of the control systems is tested 
with the following inputs to the system, 

y,,f(t)=-108+(120-108)X 1+(t-200) 

yzref (t) = 66.65 + (120 - 66.65) x 1' (t -600) 

This reference change in pressure and power represents a 
relatively large demand change in both variables and 
illustrates the merits and weaknesses of each design. 

Y3ref(t)= 0. 

GAP1 Controller Results 
The performance of the system with the GA-designed 
coupled PI controller is illustrated in Figs. 2-4. Table I 
contains the controller gains at each stage of training. The 
drum pressure is very oscillatory with a large overshoot. 
This response settles out with a steady-state error of 0.175. 
The power response is good during the first change in 
pressure at 200 seconds. As can be seen, the change has 
little influence on power. When the demand in power 
steps up to 120 MW the power output overshoots by about 
5 MW for a duration of less than 200 seconds. This 
overshoot can be attributed to the saturation of the control 
valve for that period of time (not shown). Again, the 
change in power has little effect on pressure at 600 
seconds. The steady-state error of the power is 0.0004 
MW. The drum water level deviation is acceptable during 
both transitions in pressure and power. The largest 
deviation of the level occurs during the power demand 
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change at 600 seconds when the level exceeds 0.15 meters 
fiom the nominal level. The steady-state error for the level 
is 0.000243 meters. 

Table I. Gains at each training stage. 
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Fig. 2. GAP1 pressure response. 

Power Outuut 
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Fig. 3. GAP1 power response. 

time (s) 

Fig. 4. GAP1 level response. 

GAnQR Controller Results 
The performance of the system with the GA-designed 
LQR controller is shown in Figs. 5-7. The result of the 
GALQR design is the state feedback matrix, 

1. 0.0354 0.2236 -0.145 1 
-0.0430 0.0588 0.0039 

0.1609 -0.63 16 0.4275 

It should be noted that, to ensure steady-state tracking, that 
a feedforward gain matrix is added to the system. This is 
obtained by calculating the system transfer function and 
finding a suitable matrix, F, so that the system tracks step 
demands in the steady-state. The values of the matrix are 
found to be 

I 0.0341 0.0018 0.6567 

-0.0051 0.0903 -1.3537 
-0.4234 -0.4088 94.3416 

The pressure tracks the initial demand change well and 
there is a 5 kg/cm2 pressure bump when the power 
demand is stepped up. The steady-state error in pressure is 

0.252 kg/cm2. The power response shows a large drop (25 
MW) when the pressure demand is stepped up at 200 
seconds. The power tracks the step demand at 600 
seconds well achieving a steady-state error of 0.68 MW. 
The drum water level deviation undergoes relatively large 
deflections at each demand change in pressure and power. 
The largest of these is a level drop of 0.25 meters. The 
steady-state error in level is 0.0425 meters, due in large 
part from the deviation from the nominal operating point. 
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Drum Pressure 
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5. Conclusions 

In this paper, a control system design methodology for a 
non-linear MIMO boiler-turbine plant was presented. A 
brief summary of the GA was presented and its application 
to power plant control system design was discussed. The 
resulb of the GA design of a coupled PI controller and 
output feedback controller were presented. It was found 
that the GAP1 control system achieved good steady-state 
tracking but oscillations due to the integral action were 
prevalent. The GALQR control system performed well 
but at the cost of small but fmite steady-state error. 
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Fig. 5. GA/LQR pressure response. 
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Fig. 6. GA/LQR power response. 
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Fig. 7. GALQR level response. 
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